NASA AATT HITS Program

(Helicopter In-flight Tracking System)

FAA Safe Flight 21 En Route and Oceanic Applications

April 28, 2004

Briefing to:

NASA ICNS Conference Surveillance Session

Prepared by:

Chris Daskalakis
Patrick Martone
U.S. DOT Volpe Center

Surveillance and Assessment Division (DTS-53)

HITS I Overview

- Period: 2001 and 2002
- Participants: NASA, Volpe, Sensis
- Function: Surveillance using 2 technologies:
 - Wide Area Multilateration (WAM)
 - Automatic Dependent Surveillance Broadcast (ADS-B)

Purposes:

- Engineering 1: WAM concept validation
- Engineering 2: Effectiveness of WAM and ADS-B over water
- Operational: Test acceptability of WAM as helicopter flight following system

HITS I Coverage

Coverage areas

- "Primary" (containing ground sites) — 7,000 nmi² above 100 ft altitude
- "Extended" 8,725 nmi² above 1000 ft
- Additional at higher altitudes

En route radars

- Lake Charles
- Slidell

Terminal radars

- Lafayette
- Lake Charles
- Baton Rouge
- New Orleans

HITS II Overview

- Period: 2003 and 2004
- Participants: NASA, FAA, Volpe, Sensis
- Functions: Surveillance using 2 technologies:
 - Automatic Dependent Surveillance Broadcast (ADS-B)
 - Wide Area Multilateration (WAM)

Purposes:

- Operational 1: Demonstrate continuous surveillance between U.S. (central Gulf coast) and Mexico (Yucatan)
- Operational 2: Test validity of WAM for terminal area helicopter operations
- Engineering 1: Demonstrate effectiveness of ADS-B over very wide area (400,000 nmi²)
- Engineering 2: Test WAM over very wide area

Multilateration Terminal Area System Overview

- Controlled flight tests of the terminal area system at Intracoastal City, LA conducted June 10 to June 12, 2003
- Two rotary wing aircraft (Bell 206 Long Ranger) leased from Petroleum Helicopters, Inc.
 - Aircraft flew predefined flight segments below 10k feet
 - Tests conducted using discrete and non discrete beacon codes
 - Aircrafts' ATCRBS (Mode A/C) transponders checked with portable test set each morning
 - Transponder "swapped out" on Tail # N906PH after June 10 flight test
 - Higher power transponder 600 Watts
 - Original transponder output measured at 300 Watts from transponder test kit
 - Questionable performance
- Government evaluated HITS performance qualitatively for discrete targets in the following categories:
 - Positional Accuracy
 - Nominal Errors
 - Large Errors (False Targets)
 - Update Interval
 - Horizontal Position
 - Beacon (Mode A) Code
 - Altitude (Mode C) Code
 - Probability of Detection
 - Total percentage of position reports received within five seconds
 - Coverage Volume
 - Target Resolution

INCY Coverage Area

Horizontal Difference Cum. Prob.

(HITS Multilateration) – (GPS)

Multilateration v ASR – 8 Data

Target Resolution Multilateration v. ASR - 8

EnRoute Radar Coverage Gulf of Mexico

ADS-B Coverage at FL280

Multilateration Coverage at FL280

HITS II Remote Units

Wide Area Multilateration N40 Track

Wide Area Multilateration N40 Track

GPS, Multilateration, and Radar Feb. 11 AM

N40 Flight Test IAH – MSY FL300

ADS-B v Radar Coverage

N40 Flight Test MSY – IAH FL 280

ADS-B vs. Radar Data Jan 7 PM Flight

ADS-B vs. Radar Data Jan 7 PM Flight

ADS-B Performance

Range

Remote Units (Brutus and Mars) performance limited by line-of-sight and not RF performance

Position Update Interval

- Update rates within 200 nmi well suited for EnRoute domain
- For aircraft target beyond 200 nmi, ADS-B performance was <u>outstanding</u>

Altitude Update Interval

- Aircraft altitude embedded in the ADS-B position message
- Updates identical to position updates

Flight ID Update Interval

HITS decoded aircraft Flight ID when present

False Targets

No false targets observed in data

Velocity reports

 Velocity reports decoded by HITS but ASTERIX 10 message does not support dissemination to users

Special Pulse Indicator

Flight testing indicated error w/some transponders outputting SPI in ADS-B message set

ADS-B Performance Observations

- HITS provided coverage into Mexican FIR at the following EnRoute intersections:
 - SWORD
 - FRISH
 - FIR07
 - N40 flew at FL370 for these tests
 - Need to validate performance in the March flight test to determine if performance related to anomalous propagation
- Appears to be sufficient coverage for Houston Oceanic West Sector
- Houston East Sector however will require additional ground stations for improved performance
 - FRISH/MYDIA not within HITS coverage area at FL280
- Additional sights will be required west of Key West FI, and the Yucatan Peninsula

Next Steps

- NASA R&D effort to assess multilateration and ADS-B has been completed
 - Volpe Center will submit report detailing results since 2003
- FAA's SF21 Program Office responsible for defining an architecture, Communication, Weather and Surveillance (CWS), for Low and High Altitude users
 - Current HITS II configuration will remain in place until April 2005
- For low altitude users, 1,500 ft minimum altitude for surveillance and voice communication coverage
- For high altitude users, FL280 minimum altitude coverage for surveillance and voice communication coverage
- Initial lay down of CWS equipment sited at Gov't facilities and major oil platform owners (per Memorandum of Agreement)

Predicted High Altitude Coverage Surveillance and Communications

Predicted Low Altitude Coverage Surveillance and Communications

